
Effective-medium theory for energy velocity in one-dimensional finite lossless photonic crystals

Guido Torrese,1 Jason Taylor,2 Trevor J. Hall,2 and Patrice Mégret1
1Service d’Electromagnétisme et de Télécommunications, Faculté Polytechnique de Mons, Mons, Belgium

2Centre for Research in Photonics (CRP), University of Ottawa, Ottawa, Canada
�Received 14 October 2005; published 16 June 2006�

The effective medium theory is a useful approach for investigating the electromagnetic wave propagation in
periodic multilayer slabs. It allows accurate computation of transmission and reflection spectra as well as of
phase and group velocities. In this paper we derive an exact analytical expression for the energy velocity of a
one-dimensional finite photonic crystal based on the effective medium approach. It accounts for the multiple
reflections within the structure which results in the characteristic oscillations of the transmission spectrum. Our
analytical expression holds for an arbitrary refractive index contrast and goes beyond the limits of the standard
homogenization method. In order to validate our approach, results obtained by using the all-frequency effective
energy velocity have been compared to those obtained using the transfer matrix method.
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I. INTRODUCTION

Over the last few years photonic crystals �PCs� have re-
ceived extensive attention because of the possibility of sup-
pressing the electromagnetic wave propagation in all direc-
tions and for all polarizations across some frequency bands
�1–4�. Moreover, the interesting behavior of the effective
phase and group velocity near the band edge offers the pos-
sibility of designing ultrarefractive devices as well as low
threshold lasers. A clear understanding of the relationship
between wave transport and the band �or stop� gap is re-
quired to drive innovation. In the analysis of PC based de-
vices the concept of phase and group velocity has been
widely discussed �5,6�. Bendickson and Dowling �7� show
that in the weak atom-cavity coupling limit, the group veloc-
ity can be related to the electromagnetic mode density, which
in turn is proportional to the emission rate. Moreover, they
provided an analytical expression for the group velocity in
the case of finite, N-period, one-dimensional, linear photonic
band-gap structures. Despite its apparent triviality, this is a
subject which is perennially revisited whenever a novel sys-
tem or experimental realization is found �8,9�. At its heart lie
the physical interpretations of the various transport velocities
so ably introduced by Sommerfeld and Brillouin in the early
part of the previous century �10�. In contrast to the case of
particles for which the velocity has a clear precise meaning,
waves have at least three different kinds of velocities, i.e.,
the phase velocity, the group velocity and the energy veloc-
ity. The velocity of the wave packet is given by the group
velocity which, in most circumstances, represents the veloc-
ity of the dominant frequency component. It is easy to see
that in uniform dielectric lossless materials, because the per-
mittivity is a slowly varying function of the angular fre-
quency �, phase and group velocities are equal to the veloc-
ity of energy transport, i.e., to the energy velocity �10�. On
the other hand, in stratified media, for light wavelengths
matching the characteristic length scale of the crystal, even
when the dielectric constant is frequency independent, wave
packets still experience dispersion. For finite one-
dimensional photonic crystals, the phase velocity dispersion
can be taken into account by means of an effective refractive

index �11�, while the group velocity can be calculated as a
function of a complex transmission coefficient �7�.

It is the purpose of this paper to discuss the energy trans-
port mechanism in photonic crystal by introducing an ana-
lytical expression for the effective energy velocity equivalent
to that provided by Bendickson and Dowling �7� for the
group velocity. We strongly believe that the issues of propa-
gation, energy flow, and field dynamics in stratified media
should be properly addressed in terms of energy rather than
group velocity. The work presented in this paper has been
partially motivated by the recent controversy about the tun-
neling time associated with the velocity of evanescent waves
crossing a potential barrier. As shown by Steinberg et al.
�12�, waves traveling through a photonic crystal excited
within the band gap appear to be delayed less than waves
propagating over the same distance in a vacuum. Similar
results were obtained by Spielmann et al. �13�, who mea-
sured the superluminal propagation of femtosecond optical
pulses. The attraction of this subject comes from the apparent
superluminality of wave transport through the gap, and the
relation to relativistic causality. With this consideration in
mind, we reexamine the concept of energy velocity, and we
introduce an effective energy velocity based on an all-
frequency effective medium theory.

The paper is organized as follows. Section II deals with
the theory of reflection and transmission of light by stratified
planar layers. We focus on simple one-dimensional transla-
tional invariant linear systems conveniently described in
terms of transfer matrices. In Sec. III, we introduce the ef-
fective medium approach, while in Sec. IV we derive a
simple analytical expression for the effective energy velocity.
In Sec. V we present the results of our analysis.

II. SYMMETRIES IN MULTILAYER OPTICS

The dynamics of propagating waves in macroscopic
stratified materials can be described by solving Maxwell’s
equations. The physical distinction between the fields �E and
H� and the corresponding fluxes �D and B� is determined by
the presence of matter through the existence of constitutive
relations. These constitutive relations, which in the most gen-
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eral case have a tensorial form, close the electromagnetic
propagation problem by specifying the coupling of light field
to the material. Since we are interested in describing a scat-
tering process, we introduced a transfer matrix formalism.
When an incident monochromatic linearly polarized plane
wave travels through a stratified material, as a result of mul-
tiple reflections, forward and backward waves in the most
left material are related to forward and backward waves in
the most right one. When the relationship between D and E,
and B and H is linear, the amplitude scaling symmetry im-
plies the following form for the transfer matrix describing a
stratified structure consisting of plane-parallel layers �14�

M =�
1

TLR
−

�RL

TLR

�LR

TLR

TLR�RL − �LR�RL

TLR

� �1�

with �LR and TLR the wave reflection and transmission coef-
ficients of waves traveling from left to right, respectively,
while �RL and TRL refer to the corresponding coefficients for
waves propagating in the opposite direction.

In general, symmetries are involved in conservation laws.
Some of them are implied by the Maxwell’s equations for a
suitable choice of the constitutive parameters of the medium,
others are related to the geometry of the structure. Provided
the constitutive parameters are characterized by symmetrical
tensors, a special case of which is their scalar form, the field
is invariant to the interchange of source and detector. Math-
ematically

TLR = TRL. �2�

Reciprocal relations of transport coefficients incorporating
microscopic reversibility into a statistical mechanical treat-
ment of irreversible linear processes have been derived by
Onsager �15�. The transfer matrix of a linear reciprocal 2
�2 network belongs to the unimodular group SL�2,C� �14�,
regardless of the dielectric or absorbing properties of the
constitutive layers. It should be noted that reciprocity does
not imply energy conservation �in the form ���2+ �T�2=1�,
neither is it a consequence of invariance to time reversal.
When a linear system is invariant under time reversal opera-
tion, i.e., there exist two indistinguishable states of the sys-
tem �+t	 and �−t	, the transfer matrix M, relating the forward
and backward fields in the most left material to the forward
and backward fields in the most right one, can be written as

M =�
1

TLR

�LR
*

TLR
*

�LR

TLR

1

TLR
*
� . �3�

A scattering process invariant under time reversal satisfies

��LR� = ��RL� �4�

and not necessarily Eq. �2�. On the other hand, systems that
are reciprocal and energy conservative are invariant under
time reversal operation. We now consider the case of sym-
metry related to the geometry of the structure, namely the

translational symmetry which characterizes periodic media.
The knowledge of the unit-cell transfer matrix M allows one
to calculate the transmission and the reflection coefficients of
the whole structure. As discussed by Bendickson and Dowl-
ing �7�, a closed form expression for the transmission and the
reflection coefficients of a linear time-invariant one-
dimensional isotropic �and consequently reciprocal� periodic
system can be obtained as

1

TN
=

1

T

sin„N����…
sin ����

−
sin��N − 1������

sin ����
, �5�

�N

TN
=

�

T

sin„N����…
sin ����

�6�

with TN and �N, respectively, the wave transmission and re-
flection coefficient of the N unit cells structure, and ���� the
Bloch phase of the infinite periodic crystal obtained in the
limit N→ +�. By forcing the unit cell to be invariant under
coordinate inversion, the scattering process must be physi-
cally indistinguishable when looking from the right or the
left. This operation which reflects the coordinates is called
parity. Mathematically

TLR = TRL, �LR = �RL. �7�

Consequently 
i�jmij =0, where mij are the elements of the
transfer matrix M. Parity conservation not only implies reci-
procity, but also forces the left to right and right to left wave
reflection coefficients to be equal. As previously discussed,
when the unit cell is not invariant under parity operation, �LR
and �RL differ only by a phase factor.

III. EFFECTIVE MEDIUM APPROACH

The effective properties associated with the propagation
of electromagnetic waves in photonic crystals have been
widely discussed in the literature �16,17�. The definition of
effective quantities is an attempt to extend traditional con-
cepts such as phase and group velocities, well defined in
homogeneous materials, to composite materials. Although
this approach can be useful for designing multilayer struc-
tures such as waveguides, it obscures the physics governing
the propagation of waves. The phase velocity �p represents
the velocity of traveling equi-phase surfaces, and it is a mea-
sure of how fast different wave frequency components travel
in the medium. In the absence of material dispersion in a
homogeneous material, the phase velocity is a real frequency
independent quantity. As discussed in �16�, when considering
stratified materials, the phase velocity cannot be used unam-
biguously. As a matter of fact, because of forward and back-
ward plane wave superposition, the equi-phase surfaces can-
not be rigorously defined. Care must be exercised when
introducing an effective phase velocity, defined as the ratio
of the speed of light in a vacuum c and an effective refractive
index np,ef f��� �11�. When considering frequencies near the
band edge, a large change of np,ef f��� occurs. Inside the band
gap the effective refractive index is complex even in the
absence of material absorption or gain. Beside the effective
phase refractive index np,ef f���, the effective group refractive
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index ng,ef f��� was introduced by Sakoda �16,18� to describe
the ratio c /vg,ef f���. Once more, considerations analogous to
that concerning the effective phase velocity apply. Group
velocity is associated with a particular wave vector and thus
can only be defined for wave packets characterized by a
spectrum that is narrow enough not to experience significant
dispersion. Spatially confined wave packets have a spectrum
containing arbitrarily high harmonics, so in order to avoid
inconsistency, in the rest of this paper we restrict our analysis
to signals characterized by an infinitesimal band of frequen-
cies. Moreover, we will consider transparent media, where
both k vector and the angular frequency � are real quantities.
In absorbing dielectrics, difficulties arise in attempting to
relate the group velocity to the velocity of energy propaga-
tion. Because waves are attenuated as they propagate, the k
vector is a complex quantity and the group velocity given by

vg =
��

�k
�8�

will be complex too. On the other hand, when only the real
part of the k vector is used in Eq. �8�, the group velocity may
be larger than c. When extending the idea of group velocity
to composite materials we should introduce the term effec-
tive group velocity. It is obtained by replacing the k vector in
Eq. �8� by an effective wave vector kef f���, which in turn is
related to the transmission phase ���� accumulated by a
wave traveling along the medium. The effective group veloc-
ity does not have the same physical meaning as the standard
group velocity. The mathematical formulation of the electro-
magnetic energy transport through an inhomogeneous me-
dium in terms of effective group velocity not only implies
superluminality for frequencies within the band gap, but it
allows kef f��� to be a complex quantity even in the absence
of absorption �19�. The paradoxal description of superlumi-
nality arises when associating the time spent by the maxi-
mum of the field envelope crossing the medium with the
dwell time. As a matter of fact, in evanescent regions, where
the field decays exponentially, this conception is seriously
questionable.

In order to investigate the dynamic properties of the field
in photonic crystals, we consider the energy velocity �e as
defined by Brillouin �10�

ve =
S���
U���

, �9�

where S��� is the time average magnitude of the Poynting
vector and U��� is the time average of the energy density. In
a dielectric medium without dispersion, both permittivity and
permeability are real constants, and the rate of change of the
electromagnetic energy

U��� =
1

2
�E · D + H · B� �10�

has a precise thermodynamic significance: it represents the
difference between the internal energy per unit volume with
and without the field, the density and entropy remaining un-
changed. On the other hand, when considering material dis-

persion, the electromagnetic energy cannot be rationally de-
fined as a thermodynamic quantity �20�.

Let us consider an electromagnetic wave propagating in
the z direction in a one-dimensional medium which is elec-
trically inhomogeneous but isotropic. Without loss of gener-
ality, the electric field is taken to be directed such that
E�z ,��=E�z ,��x, and hence orthogonal to the magnetic
field H�z ,��=H�z ,��y. Because of the uniformity of the
medium in the x direction, the dependence on x can be taken
as being through the factor ejkxx. The electric field inside the
medium can be written as the sum of forward and backward
propagating field components

E�z,�� = E+�z,�� + E−�z,�� �11�

with

E±�z,�� = E0
±�z�e�jk���z, �12�

while the magnetic field is obtained from Maxwell’s equa-
tions as

H�z,�� =
1

	
�E+�z,�� − E−�z,��� �13�

with the surface impedance 	=�
 /�. Time average Poynting
vector and energy density can now be calculated by using
Eqs. �11� and �13�. By taking the real part of the complex
Poynting vector, the time average of the energy flux density
can be calculated as

S�z,�� =
1

2
Re�E�z,�� � H�z,��*�

=
1

2	�z�
��E+�z,���2 − �E−�z,���2� , �14�

For an infinitely long structure, �E+�z ,���2= �E−�z ,���2, there
are no traveling waves, the power is purely reactive and all
energy is stored in the medium. On the other hand, in real-
istic finite structures, the forward and backward intensities
are not equal, consequently there are always traveling waves
transporting a real power. For the time average energy den-
sity we have

U�z,�� =
1

4
���z��E�z,���2 + 
�z��H�z,���2�

=
1

2
��z���E+�z,���2 + �E−�z,���2� . �15�

It represents the electromagnetic storage energy in a lossless
material. When substituting Eqs. �14� and �15� into Eq. �9�,
the energy velocity is

�e�z,�� = �p�z�
1 − ���z,���2

1 + ���z,���2
�16�

with ��z ,�� the wave reflection coefficient defined as
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��z,�� =
E−�z,��
E+�z,��

. �17�

According to the above definition the energy velocity is a
local real quantity always less than the speed of light in a
vacuum. As a matter of fact, since ���z ,���2 ranges from
zero to one, the energy velocity is always lower than the
phase velocity �p=c /n, which in turn is lower than c.

Because in finite structures forward and backward travel-
ing waves at the input and output ends of the sample deter-
mine oscillations in the reflectance, for frequency outside the
band gap, the energy velocity exhibits an oscillatory behav-
ior. On the other hand, when approaching the band-gap
edges, the reflectivity increases, strongly reducing the energy
velocity. When increasing the length of the structure the en-
ergy velocity at a frequency within the band gap begins to
decrease, since only a small amount of energy is transmitted
through the structure.

IV. EFFECTIVE ENERGY VELOCITY

In this section we describe an all frequency effective me-
dium theory for the energy velocity. The energy transport
problem is formulated in terms of electromagnetic wave
propagation in a single layer with the effective properties of
a photonic crystal. The effective medium approach has been
widely discussed by Jeong et al. in �21�. The authors showed
that in large frequency regions, away from the long wave-
length region, a photonic crystal cannot simply be approxi-
mated as an effective medium. This result seems to contra-
dict that obtained by Boedecker �22�, who derived a simple
formula for the reflection coefficient of a semi-infinite crystal
described by a one-dimensional Kronig-Penney model. Be-
cause the energy velocity is directly related to the wave re-
flection coefficient, we first clarify this point.

Consider the transfer matrix MN=MN, characterizing a
generic one-dimensional photonic band-gap structure shown
in Fig. 1. This matrix is one of the possible representations of
the linear map U :C2→C2, with respect to some basis. A
simple factorization reducing MN to its diagonal form is ob-
tained as

MN = �V�V−1�N = V�NV−1, �18�

where V is the eigenvector matrix, and �=diag�
±	. Because
of the transfer matrix characterizing the reciprocal N-layer
structure is symplectic, the two eigenvalues are paired inde-

pendently on the lattice symmetry, and they satisfy the rela-
tion 
+
−=1. From a physical point of view, the above con-
dition implies a partition of the eigenvector into forward and
backward propagating waves. Propagating modes are charac-
terized by the condition �
± � =1, while exponentially decay-
ing and growing modes are characterized by �
+ � 
1 and
�
− � �1 in the forward and backward direction, respectively.
By denoting forward and backward propagating waves in the
Bloch space by �+ and �−, respectively, we have

��1
+

�1
− 
 = �
+

N 0

0 
−
N 
��N

+

�N
− 
 . �19�

No waves are scattered back if and only if �N
− =0. It should be

noted that the condition �N
− =0 implies that �1

−=0 only if the
product 
−

N�N
− →0 as N→ +�. While inside the band gap

both forward and backward mode decay as the number of
layers tends to infinity �i.e., 
+

N, 
−
−N→0 as N→ +��, outside

the band gap we have to introduce an infinitesimal amount of
losses �22� to satisfy the condition �1

−=0 in the limit N→
+�. We now take a closer look at Eq. �18�. The diagonal
matrix �N=diag�e±j����N	, has exactly the structure of a
propagation matrix characterized by the effective wave vec-
tor

kef f���L = N���� , �20�

where L the total length of the periodic structure. On the
other hand, the matrix V in the most general case does not
represent an interface matrix. By noting that eigenvectors are
only fixed to an overall scale factor, the most general matrix
V satisfying the diagonalization problem �18� can be written
as

V = �v21
T�*

T*�T
+ − 1�
v22

T�*

T*�T
− − 1�
v21 v22

� , �21�

where the matrix elements v21 and v22 are free parameters.
We can now force V to represent an interface matrix by op-
portunely choosing the free parameters v21 and v22. The ma-
trix describing the behavior of forward and backward field
components at the interface is simply obtained by imposing
the continuity of the tangential components of the field at the
interface. By doing so, we have

�sup,ef f =
1

tef f
� 1 ref f

ref f 1

 , �22�

where ref f and tef f =1+ref f are the Fresnel reflection and
transmission coefficients at the interface between the super-
strate and the effective material, respectively. Thus, the ma-
trix V represents a propagation matrix if and only if the sys-
tem

v21 = v22
T�*

T*�T
− − 1�
=

ref f

tef f
, �23�

FIG. 1. Schematic of a photonic band-gap structure and the
corresponding effective medium.
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v22 = v21
T�*

T*�T
+ − 1�
=

1

tef f
�24�

has a solution. After some algebra, we can show that the
system above has the solution

v11 = v22 =
�*

1 − T*
− + �* , �25�

v12 = v21 =
1 − T*
−

1 − T*
− + �* , �26�

if the unit-cell reflection and transmission coefficients satisfy
the following equation:

T�* + T*� = 0. �27�

For a linear system, Eq. �27� implies that the matrix M is
invariant under a change of parity. It should be noted that this
is not the case for the unit-cell matrix derived in �21�. This is
not surprising. When Eq. �27� is not satisfied, the effective
medium approach fails. In the rest of this paper we consider
a unit-cell transfer matrix M invariant under parity operation.

By using the V matrix, the condition �1
−=0 in the Bloch

space, implies in the plane wave space

�E1
+

E1
− 
 = V��1

+

0

 . �28�

Then the reflection coefficient is

ref f��� =
v21

v11
=

����
1 − T���
−���

. �29�

Equation �29� represents the effective Fresnel reflection co-
efficient. It is a frequency dependent function of the wave
reflection and transmission coefficients of the unit cell. Now
the effective wave reflection coefficient �ef f��� for the slab
can be calculated by multiplying the three matrices V, �N,
and V−1

�E1
+

E1
− 
 = V�NV−1�EN

+

EN
− 
 �30�

and by imposing the condition EN
− =0. The latter implies that

no backward propagating waves travel in the rightmost ma-
terial. By doing so the effective wave reflection coefficient
can be obtained by using Eq. �17� as

�ef f��� =
ref f����1 − e−2jkef f���L�
1 − ref f���2e−2jkef f���L , �31�

while the effective wave transmission coefficient is

Tef f��� =
�1 − ref f

2 ����e−jkef f���L

1 − ref f���2e−2jkef f���L . �32�

The effective wave vector can be calculated by using Eq.
�20�, which in turn requires knowledge of the Bloch phase
���� associated with a hypothetical infinite periodic struc-
ture. As shown in �7�, the cosine of the Bloch phase is a real
quantity related to the wave transmission coefficient of the
units cell as

cos„����… =
1

2
Tr�M� = Re� 1

T
� �33�

with Tr�M� the trace of the matrix M. The Bloch phase will
be real whenever �Tr�M� � �2 and complex otherwise, corre-
sponding to the pass-band and stop-band �band-gap� condi-
tions, respectively.

Because the effective refractive index is a frequency de-
pendent quantity, the effective medium behaves as a disper-
sive material. Although Eq. �14� for the time average energy
flux density remains valid even in the presence of dispersion,
this is not the case for the time average energy density in Eq.
�15�. The latter holds only for ideal dielectrics characterized
by a constant permittivity. When the medium is dispersive
and transparent the time average energy density is given by
�20�

U�z,�� =
1

4
� �„��ef f���…

��
�E�z,���2 +

�„�
ef f���…
��

�H�z,���2� .

�34�

Equation �34� reduces to Eq. �15� when both permeability
and permittivity are frequency independent. In the rest of this
paper we will consider the energy velocity as seen by an
observer located outside the structure. Because the leftmost
and right hand materials are not dispersive, the energy den-
sity can be calculated by using Eq. �15� and consequently the
energy velocity is given by Eq. �16� when replacing � by
�ef f. Clearly, this approach does not provide insight into
what is happening inside the medium.

In order to determine a closed form expression for the
time average energy density, we have to know the linear
dielectric response of the effective medium in terms of its
permittivity. At normal incidence the Fresnel effective reflec-
tion coefficient ref f��� is

ref f��� =
	 − 	ef f���
	 + 	ef f���

, �35�

where 	 is the impedance of both the leftmost and rightmost
media. In practice, thin films are constructed with refractive
index profiles that are piecewise-constant functions. The
whole structure is located between two semi-infinite layers
of air. When limiting the analysis to index profiles formed by
a series of steps, the unit-cell transfer matrix can be always
written as a product of interface matrices �ij and propagation
matrices �h,Lh

. The index i , j ,h identifies the layer, while Lj,
Lh specify the length of the layer j and h, respectively. De-
tails concerning these matrices and their properties can be
found in many textbooks. See Principles of Optics, for in-
stance �23�. According to the above notation a unit-cell in-
variant under parity operation can be written as

�i,Li/2
�ij� j,Lj

� ji�i,Li/2
. �36�

The unit-cell transfer matrix �36� has the form �3� with wave
reflection and transmission coefficients determined by using
the following expressions:

1

TLR
=

1

tijtji
�ej�kiLi+kjLj� + rijrjie

j�kiLi−kjLj�� , �37�
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�LR

TLR
=

1

tijtji
�rije

jkjLj + rjie
−jkjLj� , �38�

where rij and rji=−rij are the Fresnel reflection coefficients at
the ij and ji interfaces, respectively. The relative effective
permittivity can now be written as

�r,ef f��� = � 	

	ef f���

2

= �1 + ref f���
1 − ref f���


2

. �39�

Now by using Eqs. �29�, �37�, and �38�, with the help of �33�,
after a few algebraic manipulations, the effective relative
permittivity can be written as

�r,ef f���

= 1 +
2��LR����2

Re��LR���	 − ��LR����2

= 1 +
4rijsin�kjLj�

rij�rijsin�kiLi − kjLj� − 2 sin�kjLj�� − sin�kiLi + kjLj�
�40�

with the real wave vector kij = �� /c�ni,j, Li,j the thickness of
the layers i,j used to build up the unit cell, and rij the Fresnel
reflection coefficient at the interface between the medium i
and j. The result given by Eq. �40� can alternatively be ex-
pressed in terms of the effective susceptibility �ef f���

�r,ef f��� = 1 + �ef f��� . �41�

The latter is always a real quantity independent of the value
of the angular frequency �. Figure 2 shows the behavior of
the effective susceptibility �dashed line� versus the angular
frequency, for a � /4 structure �Li,j =�0 /4ni,j� with the layer
refractive indices ni=1.0 and nj =1.41. As for nonartificial
media the effective susceptibility exhibits a set of resonances
which can be described in terms of the classical Lorentz
oscillator model. However, if in real crystals the multiple
resonances are due to the absorption of the incident photons
by bound electrons, in artificial periodic structures the
Lorentzian profile is a consequence of the effective medium
approach, which allows one to represent the whole structure
as an equivalent material. The solid line in Fig. 2 represents
the reflectance of a semi-infinite structure. It has been calcu-
lated by squaring the absolute value of Eq. �29�. Everywhere
the effective permittivity becomes negative, the effective re-
fractive index switches from real to imaginary. The fre-
quency regions characterized by a negative effective permit-
tivity correspond to multiple stop gaps.

We can now calculate the energy velocity from the point
of view of an observer located outside the structure by sub-
stituting Eq. �31� into Eq. �16�, with � replaced by �ef f. In
order to obtain a simple mathematical expression for the ef-
fective energy velocity, we discuss two separate cases. The
first one corresponds to the propagation of the electromag-
netic wave characterized by frequencies outside the stop
band regions, while the second one deals with the evanescent
nature of the field with frequencies inside the stop gaps.

FIG. 2. Effective susceptibility and effective reflectance vs the normalized angular frequency for a � /4 structure with ni=1.0 and nj

=1.41.
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A. Propagating states

Propagating states are characterized by a real Bloch
phase, and by a complex conjugate pair of eigenvalues that,
in the lossless case, satisfy the relation �
± � =1. For real val-
ues of the Bloch phase, the effective permittivity is a real
positive quantity and consequently ref f��� is real. Thus, the
effective energy velocity reduces to

ve,ef f�0,�� = c
�1 − ref f���2�2

�1 + ref f���2�2 − 4ref f���2cos�2kef f���L�
.

�42�

As we approach the edges of the stop gaps, the reflectance
�ref f����2 rises quickly to one, while the eigenvalues of the
N-layer structure switch from imaginary to real. The critical
values of ���� which satisfy this condition can be easily
determined when considering the eigenvalues of the unit cell.
They can be written as a function of the Bloch phase as


± = e±j���� = cos ���� ± j�1 − cos2 ���� . �43�

When cos2 ����=1, the square root in Eq. �43� is zero,

±�Re and then 
±

N�Re. The latter implies that
cos2 N����=1. Thus the term cos�2kef f���L� in the denomi-
nator of Eq. �42� is equal to 2 cos2�kef f���L�−1=1. Conse-
quently, as the frequency approaches the value corresponding
to the stop-gap edges, both numerator and denominator of
Eq. �42� tend to zero. In order to evaluate the effective en-
ergy velocity at the band edges we consider Eq. �31�. The
condition cos2 N����=1 is satisfied when ��ef f��� � =0, i.e.,
when transmission resonances occur. As a consequence at the
stop-gap edges the effective energy velocity is equal to the
speed of light in a vacuum.

B. Evanescent states

Evanescent modes inside the crystal correspond to eigen-
vectors associated with eigenvalues that are not of modulus
one. If we focus our attention on the first band gap, the Bloch
phase is strictly imaginary, as well as the wave vector ob-
tained solving the dispersion relation. By consequence, the
eigenvalues are real and no wave can propagate. For frequen-
cies within the stop-gap region, the spatial z dependence of
the electromagnetic field can be described as an evanescent
wave, decreasing exponentially as a function of the distance
from the interface. However, because of the finite length of
the structure, the reflectivity within the stop gap is not ex-
actly equal to one, so that a very small �but not zero� energy
velocity characterizes the field in this frequency region. The
process is very similar to that experienced by electrons cross-
ing a barrier with a height exceeding the total particle energy.
In other words, the electrodynamics of the evanescent modes
is directly related to the quantum-mechanical tunneling
mechanism. Within the first stop gap, the energy velocity is

�e,ef f�0,�� = c
1 − Re�ref f���	2

cos�2kef f���L� − Re�ref f���	2 , �44�

where the effective wave vector is a pure imaginary quantity.
Equation �44� has been calculated taking into account the

fact that �ref f��� � =1 within the stop gap. Moreover, because
of the invariance of the unit-cell transfer matrix under
change of parity, the real part of the refractive index �29�
simplifies to

Re�ref f���	 =
Re�����	
������2

. �45�

The expressions for the effective energy velocity �42� and
�44� can now be written as a function of the effective relative
permittivity �r,ef f���. By inverting Eq. �39�, the effective
Fresnel refractive index is

ref f��� =
��r,ef f��� − 1
��r,ef f��� + 1

. �46�

By substituting Eq. �46� into Eqs. �42� and �44�, the follow-
ing common expression for the effective energy velocity is
found:

�e,ef f�0,�� =
2�r,ef f���c

�1 + �r,ef f
2 ���� − �1 − �r,ef f

2 ����cos2�kef f���L�
.

�47�

It is interesting to note that a similar expression was given
by Leavens and Mayato �24� for a particle tunneling through
a barrier. In that case the authors addressed the issue of de-
termining a tunneling velocity of a point particle described
by a probability distribution �i.e., wave function�. While
there are similarities, their work is based on different physi-
cal phenomena which are described by different wave equa-
tions. In our case we have described an effective velocity of
electromagnetic energy.

V. RESULTS

Figure 3 shows the energy velocity normalized to the
speed of light in a vacuum when repeating the unit cell ten
times. The effective energy velocity depicted in the top panel
has been computed by using Eq. �47�, while the bottom panel
shows a comparison between effective energy velocity and
energy velocity given by Eq. �9� and calculated by applying
the transfer matrix method �TMM�. The two curves are in
agreement within numerical error. The TMM suffers from
larger numerical error near the band gaps while Eq. �47� does
not.

Inside the stop band the energy velocity is very small.
This situation is due to the fact that only a small amount of
energy is transmitted through the structure. In the limiting
case of an infinite long crystal, no electromagnetic wave can
propagate, ��ef f��� � =1 and the energy velocity will be zero.
When this situation occurs, the interference between forward
and backward carrier waves sets up a standing wave within
the barrier. Because standing waves do not propagate, their
velocity as well as the transmitted power is zero. On the
other hand, for frequency regions outside the stop gaps, the
energy velocity is always less than velocity of light in a
vacuum, and it reaches its maximum at transmission reso-
nances. This happens outside the stop gap when the unit
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cell is transparent at some wavelength or when the angular
frequency of the incident radiation satisfies the relationship

N���� = m� , �48�

where m is a positive integer. As can be seen by inspecting
Eq. �16�, when Eq. �48� is satisfied, the energy velocity is
equal to the phase velocity. Thus, the energy velocity
maxima correspond to the values of the phase velocity ob-
tained when the condition �48� holds. When the refractive
index of the leftmost and rightmost materials is equal to one,
the phase and energy velocities are equal to the speed of light
in a vacuum. Then the energy velocity can never exceed the
speed of the light in a vacuum.

VI. CONCLUSIONS

In the last few years, several research groups have shown
that the group velocity can exceed the speed of light in
vacuum. Although there is no problem with the possibility
that the group velocity of a pulse could exceed c, there exists
a fundamental difficulty with superluminal group velocities
when considering information transport through the tunnel-
ing mechanism in finite structures. As a matter of fact, su-
perluminality cannot be explained in terms of destructive
interferences of traveling waves with real wave vector when

only evanescent states are allowed. Fast light raises funda-
mental questions concerning the link between propagation
delay and velocity. For a more complete and contemporary
treatment of speed of information, see articles by Stenner et
al. �25� and Sokolovski et al. �26�.

In this paper we described the energy transport mecha-
nism in one-dimensional finite lossless photonic crystals by
utilizing the energy velocity formulation introduced by Bril-
louin �10�. A strictly luminal all-frequency fully analytical
expression for the energy velocity has been derived in terms
of effective medium theory. For evanescent modes, part of
the energy is stored for a finite amount of time in the me-
dium. The amplitude of the traveling pulse is strongly re-
duced because of the high wave reflection. The correspond-
ing energy velocity is small, because the majority of the
energy is stored, thus does not propagate. The effective en-
ergy velocity formulation described in this paper is a funda-
mental quantity to analyze the transport mechanism in finite
lossless photonic crystals.
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FIG. 3. Top panel: normalized effective energy velocity vs the normalized angular frequency for a ten-cell � /4 structure with ni=1.0 and
nj =1.41. Bottom panel: comparison between the energy velocity computed by using the effective medium approach and the energy velocity
obtained by applying the transfer matrix method.
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